projectively related einstein finsler spaces
Authors
abstract
the main objective of this paper is to find the necessary and sufficient condition of a given finslermetric to be einstein in order to classify the einstein finsler metrics on a compact manifold. the consideredeinstein finsler metric in the study describes all different kinds of einstein metrics which are pointwiseprojective to the given one. this study has resulted in the following theorem that needs the proof of threeprepositions. let f be a finsler metric (n > 2) projectively related to an einstein non-projectively flatfinsler metric f , then f is einstein if and only if f = λ f whereλ is a constant. a schur type lemma isalso proved.
similar resources
On Projectively Related Einstein Metrics
In this paper we study pointwise projectively related Einstein metrics (having the same geodesics as point sets). We show that pointwise projectively related Einstein metrics satisfy a simple equation along geodesics. In particular, we show that if two pointwise projectively related Einstein metrics are complete with negative Einstein constants , then one is a multiple of another.
full textλ-Projectively Related Finsler Metrics and Finslerian Projective Invariants
In this paper, by using the concept of spherically symmetric metric, we defne the notion of λ-projectively related metrics as an extension of projectively related metrics. We construct some non-trivial examples of λ-projectively related metrics. Let F and G be two λ-projectively related metrics on a manifold M. We find the relation between the geodesics of F and G and prove that any geodesic of...
full textOn quasi-Einstein Finsler spaces
The notion of quasi-Einstein metric in physics is equivalent to the notion of Ricci soliton in Riemannian spaces. Quasi-Einstein metrics serve also as solution to the Ricci flow equation. Here, the Riemannian metric is replaced by a Hessian matrix derived from a Finsler structure and a quasi-Einstein Finsler metric is defined. In compact case, it is proved that the quasi-Einstein met...
full textProjectively Flat Finsler Metrics of Constant Curvature
It is the Hilbert’s Fourth Problem to characterize the (not-necessarilyreversible) distance functions on a bounded convex domain in R such that straight lines are shortest paths. Distance functions induced by a Finsler metric are regarded as smooth ones. Finsler metrics with straight geodesics said to be projective. It is known that the flag curvature of any projective Finsler metric is a scala...
full textOn a class of locally projectively flat Finsler metrics
In this paper we study Finsler metrics with orthogonal invariance. We find a partial differential equation equivalent to these metrics being locally projectively flat. Some applications are given. In particular, we give an explicit construction of a new locally projectively flat Finsler metric of vanishing flag curvature which differs from the Finsler metric given by Berwald in 1929.
full texton quasi-einstein finsler spaces
the notion of quasi-einstein metric in physics is equivalent to the notion of ricci soliton in riemannian spaces. quasi-einstein metrics serve also as solution to the ricci flow equation. here, the riemannian metric is replaced by a hessian matrix derived from a finsler structure and a quasi-einstein finsler metric is defined. in compact case, it is proved that the quasi-einstein met...
full textMy Resources
Save resource for easier access later
Journal title:
iranian journal of science and technology (sciences)ISSN 1028-6276
volume 32
issue 4 2008
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023